College Heights Christian School 2012 MSIP Final Report #### I. Introduction Our science question was, can a rate of degradation be determined for small preserved craters on the Martian surface? This question is important and interesting because it could help us understand what has and is going to happen to the craters and other surface features on Mars. Determining the rate of degradation can help scientists know which geological areas have more sand and dust, and which areas see more dust storms. This could then tell researchers how quickly surface features on Mars can change, which will allow us to determine the harshness of the Martian surface. This type of data could play a role in determining where to land future missions to Mars. One hypothesis about our science question is that the preserved craters in the Plains regions will decay faster than the preserved craters in the Polar Regions. This is because there is more wind on the plains, which would cause more dust to full the craters. (Watt 1) We also suggested that the typical, slow rates of degradation seen planet-wide will be dramatically increased in some regions due to localized and global dust storms, which can last for months, could fill in the preserved craters or make measurable changes in the height of the rim at a faster rate. ### II. Background A crater is formed by meteorites hitting the surface of a planet. Craters are usually circular in shape, with a rim, floor, and walls. Some craters have central peaks. Material can slump down to the bottom of the crater because of gravity. A small preserved crater is defined as a crater 2 kilometers or less in diameter. (Watt 1) The rate of degradation of a crater can be defined as the amount of dust and wind erosion of the raised rim or the amount of infilling on the crater floor. (Decay 1) A dust storm is a storm of strong winds and dust-filled air over an extensive area during a period of drought. (Squyres 1) The Martian atmosphere has a general circulation so the wind pattern is carried over the entire surface. The sun heats the atmosphere more at low latitudes than high latitudes. (Squyres 1) Large dust storms begin when wind lifts dust into the atmosphere. The dust absorbs sunlight and warming the air around it. As warm air rises, more wind is prevalent and therefore stirs up more dust. These dust storms can blanket the entire planet. Dust storms are more common when Mars is closest to the sun because the sun is able to more extensively heat the atmosphere. (Themis 2) The image below shows an example of a small, preserved craters on Mars. This type of crater is the focus of our study. #### V04645003 This photo shows the size of the craters we looked at for our data. Small, distinct, and preserved craters Location: 26.4°N/321.9°E These are included to show the variety of craters seen on Mars. As surface winds blow dust around, the craters become less and less distinct, showing in some cases (first image) wind streaks. The middle image shows the effect of an impact on ground that may have some subsurface ice, causes a splosh crater which ejects muddy material around the original impact site (Watt 1). The Third image shows an older large crater that has been somewhat degraded and a smaller, newer crater. V16760012 V05899006 V31968004 We used (themis.asu.edu) for these pictures. It is our hypothesis that the degradation of craters which occurs after meteorite impact could be observed by comparing photos taken years apart of the same area. This series of images was found in the Explorer's Guide and shows how craters are changed over time on Mars. (Explorer's guide.edu) This is how craters are formed on Mars (the same as on Earth). (Explorer's Guide.edu) We observed like these craters all over Mars. However, more craters are found in the Southern Hemisphere than in the Northern Hemisphere. #### III. Methods We used the images taken by the THEMIS camera aboard the Mars Odyssey spacecraft. First, we used wanted to find images of the same crater taken years apart. We used the program jmars to find craters that were preserved and less than 2km in diameter. By using the jmars program, we were able to quickly determine if a THEMIS image had been taken of a particular site, and if there were overlapping images several years apart. We only choose pairs of images that were more than 1 year apart, and that had full, clear craters in them. We began looking particularly at the geological regions of Chryse Planitia, Hellas Basin, and the Polar Regions. After spending several hours looking for craters in Hellas Basin, we found that many THEMIS images were unclear, or did not show preserved craters. It was suggested that this is because of large amounts of dust in that particular region (Manfredi 1) Craters were also scarce in the polar regions, so we modified our focus and began looking in multiple and varied regions in the Plains and mountainous areas. Because multiple groups worked along specific latitude lines, our compiled research is not focused on any specific region. Besides using jmars.asu.edu, we were also successfully able to locate craters with multiple images from the themis as u.edu website. We chose a site by general latitude that we wanted to look at and tried to find images that fit our criteria. Then we looked for a duplicate image of the same crater. After we found duplicate images, we used jmars to get the year the images were taken and the central latitude/longitude of the specific crater we were looking at. Next, we used themis-data.mars.asu.edu to get search for the specific THEMIS images and it's corresponding data set, including the incidence angle and the line resolution. We were looking to record the diameter of the crater and the incidence angle of the sun in order to calculate the depth of the crater. The last step was measuring. We pasted the pictures into Gimp and used the measuring tool to measure the crater's diameter (East to West and North to South) and the length of the shadow. To calculate the depth we used a trigonometric function of $d=L/\tan\theta$ where d represents the depth and L is length of shadow and θ is the sun angle. #### IV. Data Initially while at ASU, we collected data on only a half dozen craters. Upon returning home, we had ten groups of students who collected measurements of craters over a week's time, and we have a total of 120 images to analyze. Included in this report is a sampling of that data, collected by specific groups. An example of a pair of images we measured: A pair of images like this (2 years apart) might generate as many as 6 measureable craters. The following is the compiled master data table: | | | | | | | Early I | mage | | | | | | | |---|----------------------------------|--|---|----------------------------------|-----------------------------|--|----------------------------------|--|--------------------------|--------------------------------------|----------------------------------|--|--| | Image Number | Yr of Image | Lat | Long | Geographic Region | hadow length (pix) | Shadow length (m) | Sun Angle | Denth | Diameter (pix) | Diameter (m) | Resoultion (m/p) | Creat
Original Depth | er Measurments
Amount of infill | | V15064001 (1) | 27 | -26.2 | 59.8 | | 12 | 207.7 | 78.84 | 41 | 17 | 294.2 | 17.308 | 58.84 | 17.84 | | V15637001 (2) | 27 | -9.7 | 92.8 | Sirtis Major Area | 7.2 | 249.89 | 77.848 | 54 | 9.1 | 590 | 37.378 | 118 | 64 | | V15077007 (3) | 27 | -37.08 | 43.173 | | 5.1 | 88.01 | 76.943 | 20.41095 | 32.5 | 160 | 35.06 | 32 | 12 | | V06222002 (4)
V13595010 (5) | 26
27 | -6.271
5.0219 | | Tharsis Region Tharsis Region | 5 | 87.61
71.62 | 15.06
82.38 | 88
72 | 9.1
3.5 | 160
720 | 17.522
35.81 | 32
144 | 16.94
72 | | V13595010 (6) | 27 | 5.0219 | | Tharsis Region | 4.1 | 146.81 | 82.38 | 19.64 | 7 | 260 | 35.81 | 52 | 32.36 | | V13595010 (7) | 27 | 5.0219 | | Tharsis Region | 11 | 196.35 | 82.38 | 55 | 18 | 640 | 35.81 | 128 | 73 | | V18203005 (8) | | -26.76 | 229.234 | | 16 | 273.008 | 66.5999 | 118.14 | 27 | 460 | 17.063 | 92 | -26.14 | | V15069004 (9)
V08629003 (10) | | -23.36
-18.22 | 275.99
291.624 | Solis Planum
Thaumasia Planum | 4.1
10 | 71.1719
324.95 | 79.3327
58.739 | 13
230 | 8
17.5 | 140
580 | 17.359
34.295 | 28
116 | 98.5 | | V14134008 (11) | | 32.97 | | Olympus Park | 4.1 | 76.342 | 82.83 | 10 | 8 | 150 | 18.602 | 30 | 22 | | V14134008 (12) | | 32.97 | 226.59 | | 4 | 74.408 | 82.83 | 70 | 5.1 | 100 | 18.602 | 20 | 14.9 | | V13837015 (13) | 27 | 5.3259 | | Elysium Planitia | 10.2 | 362.65 | 82.71026 | 46.39 | 17.1 | 607.97 | 35.554 | 121.594 | 104.494 | | V13114005 (1) | 27 | 26.947 | 129.575 | | 11 | 202.543 | 74.064896 | 57.83008 | 16 | 294.608 | 18.413 | 58.9216 | 1.091521698 | | V14296013 (2)
V14296013 (3) | 27
27 | 14.077
14.077 | 230.722 | Olympus Mons Olympus Mons | 18
10 | 654.624
363.68 | 84.37637
84.37637 | 64.45903
35.81057 | 33
17.5 | 1200.144
636.44 | 36.368
36.368 | 240.0288
127.288 | 207.0288
109.788 | | V18168011 (4) | 27 | 22.27 | 136.693 | | 36 | 661.536 | 68.393906 | 262.002 | 70.5 | 1295.508 | 18.376 | 259.1016 | 188.6016 | | V08271001 (5) | 26 | -14.57 | 175.221 | | 13 | 452.361 | 62.747677 | 233.0044 | 26 | 904.722 | 34.797 | 180.9444 | 154.9444 | | V12090006 (6) | 27 | 25.747 | | Amenthes Mons | 8 | 294.296 | 70.904945 | 101.8807 | 14 | 515.018 | 36.787 | 103.0036 | 89.0036 | | V15064001 (1)
V15637001 (2) | 27 | -26.2
-9.7 | 59.8
92.8 | | 7.2 | 207.7
249.89 | 78.84
77.848 | 41
54 | 17
9.1 | 294.2
590 | 17.308
37.378 | 58.84
118 | 17.84
64 | | V15077007 (3) | 27 | -37.0817 | 43.173 | | 5.1 | 88.01 | 76.943 | 20.410953 | 32.5 | 160 | 35.06 | 32 | 12 | | V06222002 (4) | 26 | -6.271 | 227.602 | Tharsis Region | 5 | 87.61 | 15.06 | 88 | 9.1 | 160 | 17.522 | 32 | 16.94 | | V13595010 (5) | 27 | 5.0219 | 291.12 | | 2 | 71.62 | 82.38 | 72 | 3.5 | 720 | 35.81 | 144 | 72 | | V13595010 (6)
V13595010 (7) | 27 | 5.0219 | 291.12
291.12 | Tharsis Region Tharsis Region | 4.1 | 146.81
196.35 | 82.38
82.38 | 19.64
55 | 7 | 260
640 | 35.81
35.81 | 52
128 | 32.36
73 | | V13595010 (7)
V18203005 (8) | 27 | -26.758 | 291.12 | | 11 | 196.35
273.008 | 66.5999 | 118.14 | 18
27 | 460 | 35.81
17.063 | 92 | -26.14 | | V15069004 (9) | 27 | -23.355 | 275.99 | | 4.1 | 71.1719 | 79.3327 | 13 | 8 | 140 | 17.359 | 28 | 20 | | V08629003 (10) | 26 | -18.22 | 291.624 | | 10 | 324.95 | 58.739 | 230 | 17.5 | 580 | 34.295 | 116 | 98.5 | | V14134008 (11) | 27 | 32.97 | 226.59 | | 4.1 | 76.342 | 82.83 | 10
70 | 8 | 150
100 | 18.602 | 30
20 | 22 | | V14134008 (12)
V13837015 (13) | 27 | 32.97
5.3259 | 226.59
150.31 | Olympus Park
Elysium Planitia | 10.2 | 74.408
362.65 | 82.83
82.71026 | 70
46.39 | 5.1
17.1 | 100
607.97 | 18.602
35.554 | 121.594 | 14.9
104.494 | | V11990008 (1) | 2004 | 23.27 N | 154.56 E | | 26 | 971.828 | 69.19305 | 369.29773 | 45.4 | 1696.9612 | 37.378 | 339.39224 | -29.90548608 | | V11990009 (2) | 2004 | 31.18N | 154.28 E | | 19 | 710.182 | 69.19305 | 276.85 | 38.5 | 1439.053 | 37.378 | 287.8106 | 249.3106 | | V12099014 (3) | M27 | .72325 | 245.611E | | 21 | 736.26 | 80.02804 | 129.45101 | 32.5 | 1139.45 | 35.06 | 227.89 | 195.39 | | V19160009 (4)
V17742023 (5) | M26
M27 | 41.57N
22.01N | 323.77E
185.43E | | 18
31 | 340.74
570.276 | 68.91337
69.94618 | 131.38928
315.53 | 54
64 | 1027.2
1174.208 | 18.93
18.93 | 205.44
234.8416 | 151.44
-80.6884 | | V13858009 (6) | M27 | 29.36N | 267.91E | | 16 | 589.04 | 80.00748 | 160.85 | 23 | 846.745 | 36.815 | 169.349 | 8.499 | | V13023010 (7) | M27 | 27.08N | 234.72E | Olympus Mons | 22 | 807.46 | 73.902016 | 233.03058 | 39 | 1431.4117 | 36.703 | 286.28234 | 53.25176442 | | V17704026 (8) | M26 | 19.79N | 201.32E | Amazonis Planitia | 44 | 804.056 | 79.34483 | 261.29573 | 76 | 1388.824 | 18.274 | 277.7648 | 16.46907068 | | V121461010 (9)
V25490001 (10) | M27
M28 | 16.66N
2.486S | 245.31E
264.9E | | 10
34.9 | 365.14
613.1581 | 74.06465
66.49007 | 310.86
266.735 | 21
80.3 | 766.794
1410.79 | 36.514
17.569 | 153.3588
282.158 | 124.406
128.7992 | | V25490001 (11) | M28 | 2.4865 | 264.9E | | 41.8 | 734.3842 | 66.49007 | 319.47 | 93.1 | 1635.67 | 17.569 | 327.134 | 7.664 | | V17658007 | 2003 | -28.77 | 110.48 | | 11 | 190.311 | 60.05737 | 109.6222 | 49 | 847.749 | 17.301 | 169.5498 | 59.92762291 | | V17658007 | 2003 | -28.77 | 110.48 | | 13 | 224.913 | 60.05737 | 129.5535 | 79 | 1366.779 | 17.301 | 273.3558 | 194.3558 | | V17658007
V07674003 | 2003
2002 | -28.77
-21.85 | 110.48
111.38 | | 32
13 | 553.632
446.875 | 60.05737
66.728096 | 318.9009
192.1951 | 120
36 | 2076.12
1237.5 | 17.301
34.375 | 415.224
247.5 | 295.224
211.5 | | V07674003 | 2002 | -21.85 | 111.38 | | 21 | 721.875 | 66.728096 | 310.4689 | 34 | 1168.75 | 34.375 | 233.75 | 199.75 | | V07674003 | 2002 | -21.85 | 111.38 | | 9 | 309.375 | 66.728096 | 133.0581 | 31 | 1065.625 | 34.375 | 213.125 | 182.125 | | V07674003 | 2002 | -21.85 | 111.38 | | 30 | 1031.25 | 66.728096 | 443.5271 | 50 | 1718.75 | 34.375 | 343.75 | 293.75 | | V07674003
V08135024 | 2002
2002 | -21.85 | 111.38
111.52 | | 10
54 | 343.75
1930.014 | 66.728096
74.37411 | 147.8424
539.8098 | 28
100 | 962.5
3574.1 | 34.375
35.741 | 192.5
714.82 | 164.5
614.82 | | V08135024
V08135024 | 2002 | 7 | 111.52 | | 21 | 750.561 | 74.37411 | 209.926 | 41 | 1465.381 | 35.741 | 293.0762 | 252.0762 | | V05053003 | 2002 | -11.12 | 99.66 | Terra Tyrrhena | 17.7 | 614.8626 | 75.59675 | 157.9071 | 22 | 764.236 | 34.738 | 152.8472 | 130.8472 | | V05053003 | 2002 | -11.12 | | Terra Tyrrhena | 22 | 764.236 | 75.59675 | 196.2687 | 32.5 | 1128.985 | 34.738 | 225.797 | 193.297 | | V05053003
V05053003 | 2002
2002 | -11.12
-11.12 | | Terra Tyrrhena
Terra Tyrrhena | 18.9
10.3 | 656.5482
357.8014 | 75.59675
75.59675 | 168.6126
91.88942 | 31
19 | 1076.878
660.022 | 34.738
34.738 | 215.3756
132.0044 | 184.3756
113.0044 | | V05053003
V05053003 | 2002 | -11.12 | | Terra Tyrrhena | 10.3 | 625.284 | 75.59675 | 160.5835 | 23 | 798.974 | 34.738 | 159.7948 | 136.7948 | | V12695006 | 2003 | 28.16 | 336.59 | | 40.9 | 1530.8461 | 72.05157 | 495.8792 | 65 | 2432.885 | 37.429 | 486.577 | 421.577 | | V12770011 | 2003 | 28.21 | 333.03 | | 87 | 3253.104 | 72.64656 | 1016.559 | 87 | 3253.104 | 37.392 | 650.6208 | 563.6208 | | V12645009-1
I02460009 | 2 | 7.0N
4.6N | 332.8E
331.4E | | 10.8
14 | 396.39
1402.88 | 81.1674
59.6 | 61.59538
823.0648 | 16
36 | 587.2
1321.2 | 36.7
100.2 | 117.44
264.24 | 55.84462346
64.2 | | 114808001 | 2 | 4.6N
15.6S | 246.0E | | 29 | 2934.13 | 84.01095 | 307.8226 | 18 | 1821.6 | 100.2 | 364.32 | 346.32 | | V12645009-2 | 2 | 17.7N | | Olympus Mons | 62.8 | 2304.76 | 75.2 | 608.9439 | 27.2 | 998.24 | 36.7 | 199.648 | 172.448 | | V12645009-3 | 2 | 17.7N | 337.2E | | 27.7 | 1016.67 | 75.2 | | 35.6 | 1306.6 | 36.7 | 261.32 | 225.72 | | V11990008 (1)
V11990009 (2) | 2004
2004 | 23.2 N
31.1N | 154.5 E | | 22
19 | 822.316
710.182 | 69.19305
69.19305 | 312.4827
269.8714 | 45.4
38.5 | 1696.9612
1439.053 | 37.378
37.378 | 339.39224
287.8106 | 26.9095487
17.93918479 | | V11990009 (2)
V21328004 | 2004 | 58.6 N | 68.3 E | | 50 | 710.182
967.9 | 69.19305 | 359.4253 | 38.5
102 | 1974.516 | 19.358 | 287.810b
394.9032 | 35.47793838 | | V03229003 | 2002 | 14.3 N | 114.4E | | 33 | 594.297 | 62.56435 | 308.5236 | 73 | 1314.657 | 18.009 | 262.9314 | -45.59218854 | | V04702003 | 2003 | 14.0 N | 116.2 E | "Elysium Planitia" | 10 | 733.61 | 70.27972 | 262.9634 | 35.5 | 2604.3155 | 73.361 | 520.8631 | 257.899702 | | V05196001 | 26 | -12.2 | 295.6 | | 22.8 | 1579.812 | 79.96 | 279.701 | 33 | 2286.57 | 69.29 | 457.314 | 177.6131719 | | V05196001
V05196001 | 26
26 | -12.2
-12.2 | 295.6
295.6 | | 8.5
10 | 588.965
692.9 | 79.96
79.96 | 104.274
122.676 | 15.5
15.6 | 1073.995
1080.924 | 69.29
69.29 | 214.799
216.1848 | 110.5245685
93.50899821 | | V05196001
V05082022 | 26 | 30.65 | 320.33 | | 7.2 | 133.92 | 79.96 | | 11.5 | 213.9 | 18.60 | 42.78 | -5.804135237 | | V05052522 | 26 | 28.47 | 313.29 | | 4.1 | 75.85 | 79.09 | 14.6201 | 8.5 | 157.25 | 18.50 | 31.45 | 16.82986255 | | _ | 26 | 28.47 | 313.29 | | 6.4 | 118.4 | 79.09 | | 9.5 | 175.75 | 18.50 | 35.15 | 12.32832203 | | V05257020 | 26 | 26.52 | 320.68 | | 5.1 | 187.629 | 70.30 | | 10.1 | 371.579 | 36.79 | 74.3158 | 7.134891801 | | V05057010 | | 26.52 | 320.68 | | 8.1
2.8 | 297.999
205.632 | 70.30 | | 15.2 | 559.208 | 36.79 | 111.8416 | 5.142510508 | | V05057010
V05057010 | 26 | | 227 00 | | | L 203.032 | 61.03 | 113.843 | 6 | 440.64 | 73.44 | 88.128 | -25.71496892 | | V05057010
V05057010
V03334003 | 26 | 25.02 | 327.89 | | | | 61.03 | 56 9215 | 3.8 | 279 072 | 73.44 | 55 8144 | -1 107084458 | | V05057010
V05057010 | | | 327.89
327.89
326.1 | | 1.4 | 102.816
290.4 | 61.03
62.13 | 56.9215
153.564 | 3.8
17 | 279.072
617.1 | 73.44
36.30 | 55.8144
123.42 | -1.107084458
-30.14425928 | | V05057010
V05057010
V03334003
V03334003 | 26
26 | 25.02
25.02 | 327.89 | | 1.4 | 102.816 | 62.13
57.97 | 153.564
202.056 | | | | | | | V05057010
V05057010
V03334003
V03334003
V03359003
V02610007
V05918016 | 26
26
26
26
26 | 25.02
25.02
19.28
19.31
18.73 | 327.89
326.1
326.76
329.22 | | 1.4
8
8.9
2.2 | 102.816
290.4
322.981
40.15 | 62.13
57.97
79.56 | 153.564
202.056
7.39788 | 17
18.6
5.1 | 617.1
674.994
93.075 | 36.30
36.29
18.25 | 123.42
134.9988
18.615 | -30.14425928
-67.05734952
11.21711817 | | V05057010
V05057010
V03037010
V03334003
V03334003
V03359003
V02610007
V05918016
V05918016 | 26
26
26
26
26
26 | 25.02
25.02
19.28
19.31
18.73
18.73 | 327.89
326.1
326.76
329.22
329.22 | | 1.4
8
8.9
2.2
2 | 102.816
290.4
322.981
40.15
36.5 | 62.13
57.97
79.56
79.56 | 153.564
202.056
7.39788
6.72535 | 17
18.6
5.1
4.1 | 617.1
674.994
93.075
74.825 | 36.30
36.29
18.25
18.25 | 123.42
134.9988
18.615
14.965 | -30.14425928
-67.05734952
11.21711817
8.239652885 | | V05057010
V05057010
V03334003
V03334003
V03359003
V02610007
V05918016 | 26
26
26
26
26 | 25.02
25.02
19.28
19.31
18.73 | 327.89
326.1
326.76
329.22 | | 1.4
8
8.9
2.2 | 102.816
290.4
322.981
40.15 | 62.13
57.97
79.56 | 153.564
202.056
7.39788 | 17
18.6
5.1 | 617.1
674.994
93.075 | 36.30
36.29
18.25 | 123.42
134.9988
18.615 | -30.14425928
-67.05734952
11.21711817 | | | | | | | | | | Lo | iter Image | | | | | | | | |---|--|----------------------------------|--|---|--------------------------|--|--|--|-----------------------|-----------------------------------|-------------------------------------|----------------------------------|--|------------|------------------------|--------------| | | | | | | | I | | | | | | | ter Measurments | Observat | | I | | Image Number
V36527003 (1) | Yr of Image | | | Geographic Region
Sirtis Major Area | hadow length (pix) | Shadow length (m)
241.58 | Sun Angle
73.07688 | | Diameter (pix)
10 | Diameter (m)
350 | Resoultion
34.504 | | Amount of infill Ejecta
30 | Central Pe | ak Rim Def | Other change | | V42703001 (2) | 30 | -9 | 7 92. | Sirtis Major Area | 15 | | 43.14 | | | 350 | 17.7 | 70 | 9 | | | | | V36540005(3)
V31181001 (4) | 30
29 | | | Terra
Tharsis Region | 2.2 | 75.4622
106.146 | 79.639
80.246 | | 4.1
5.5 | 540
190 | 34.301
35.382 | 108 | | | | + | | V401002010 (5) | 30 | | | Tharsis Region | 5.1 | 91.035 | 68.83 | | 10 | 180 | 17.85 | 36 | 24 | | | | | V401002010 (6)
V401002010 (7) | 30 | | | 2 Tharsis Region
2 Tharsis Region | 7.1
19 | 126.735
339.15 | 68.83 | | 14.5 | 260
610 | 17.85
17.85 | 52 | -78
-9.3 | | | + | | V3659006 (8) | | -26.7 | | Tharsis Region | 10.5 | | 74.022
63.486 | | | 530
140 | 34.4
17.1 | 106 | 6
15 | | | | | V26101003 (9)
V26088004 (10) | | -23.3
-18.0 | | Solis Planum
Thaumasia Planum | 10 | 51.3
324.95 | 63.486 | | | 280 | 17.27 | 28 | 17 | | | + | | V39166005 (11) | | 33.1 | | Olympus Park | 5.1 | 95.375 | 68.25 | 40 | | 150 | 18.701 | 30 | -10 | | | | | V39166005 (12)
V27265033 (13) | 20 | 33.:
5.55 | | Olympus Park
Elysium Planitia | 21 | 56.103
374.28 | 68.25
72.96 | 20 | 5.1
34.1 | 100
607.76 | 18.701
17.823 | 20 | 6.78 | | | + | | V27877007 (1) | | 27.08 | 4 129.62 | Libya Planitia | 9 | 167.94 | 72.11121 | 54.20686 | 16 | 298.56 | 18.66 | 59.712 | 5.505141211 NA | no | N/A | N/A | | V27699029 (2)
V27699029 (3) | 29 | | 4 230.68 | Olympus Mons Olympus Mons | 12 | 218.244
109.122 | 74.16306
74.16306 | | 66 | 1200.342
618.358 | 18.187
18.187 | 240.0684 | 178.1595711 NA
92.71718553 NA | no
no | N/A
N/A | N/A
N/A | | V27877007 (4) | 29 | 22.45 | 6 136.58 | Libya Planitia | 36 | 661.536 | 73.1895 | 199.8618 | 70.5 | 1295.508 | 18.376 | 259.1016 | 59.23981499 NA | no | N/A | N/A | | V35637004 (5)
V26479022 (6) | | | | Amazonia Planitia Amenthes Mons | 12 | | 56.091232
72.39311 | | 51
28 | 907.647
517.916 | 17.797
18.497 | 181.5294
103.5832 | 37.97290364 NA
15.53256591 NA | no
no | N/A
N/A | N/A
N/A | | V36527003 (1) | 30 | -25. | | 6 Sirtis Major Area | 7 | 241.58 | 73.07688 | | 10 | 350 | 34.504 | 70 | 30 | | 14/11 | | | V42703001 (2)
V36540005(3) | 30 | | | B Sirtis Major Area
5 Terra | 15
2.2 | 265.5
75.4622 | 43.14
79.639 | | 30.5
4.1 | 350
540 | 17.7
34.301 | 70 | 9 89 | | | + | | V31181001 (4) | 29 | | | 6 Tharsis Region | 3 | 106.146 | 80.246 | | 5.5 | 190 | 35.382 | | 19.75315209 | | | | | V401002010 (5)
V401002010 (6) | 30 | | | 2 Tharsis Region
2 Tharsis Region | 5.1
7.1 | 91.035
126.735 | 68.83 | _ | 10
14.5 | 180
260 | 17.85
17.85 | 36 | 24
-78 | | | | | V401002010 (7) | 30 | | | 2 Tharsis Region | 19 | 339.15 | 68.83 | | 34 | 610 | 17.85 | 122 | | | | | | V3659006 (8) | 30 | | | 3 Tharsis Region | 10.5 | 273.008 | 74.022 | | 15.5 | 530 | 34.4 | 106 | 6 | | | | | V26101003 (9)
V26088004 (10) | 28 | | | 5 Solis Planum
7 Thaumasia Planum | 3
10 | 51.3
324.95 | 63.486 | | 7 | 140
280 | 17.1 | 28 | 15
17 | | | | | V39166005 (11) | 30 | 33. | 7 226.5 | 9 Olympus Park | 5.1 | 95.375 | 68.25 | 40 | | 150 | 18.701 | 30 | -10 | | | \bot | | V39166005 (12)
V27265033 (13) | 30 | | | 9 Olympus Park
B Elysium Planitia | 21 | 56.103
374.28 | 68.25
72.96 | | 5.1
34.1 | 100
607.76 | 18.701
17.823 | 121.5 | 6.78 | | | | | V28700011(1) | 2008 | 23.27 | N 154.56 | E Amazonis Planitia | 59 | 1106.486 | 74.42651 | 308.38465 | 89.1 | 1670.9814 | 18.754 | 334.19628 | 25.81163281 | | | \perp | | V29274011 (2)
V39265012 (3) | 2008
M29 | .723 | | | 47
35 | 881.25
619.08 | 72.55884
80.02804 | 269.87 | 75.7
65.5 | 1419.375
1139.45 | 18.75
17.688 | 283.875 | 14.005
119.0418574 | | | + | | V39562005 (4) | M30 | 41.5 | N 323.77 | E Acidalia Planitia | 20 | 378.6 | 75.79 | 95.87084 | 55 | 1027.2 | 18.93 | 205.44 | 109.5691599 | | | | | V37645006 (5)
V27286025 (6) | M30 | 31.3 | | E Amazonis Planitia
E Tempe Terra | 27
26 | 495.369
481.13 | 57.504277
71.51386 | 208.17 | 64 | 1174.208
846.745 | 18.347
18.505 | 234.8416 | 170.8416
123.349 | + | | + | | V26788020 (7) | M30 | 27.0 | 3E 234.72 | E Olympus Mons | 41 | 764.281 | 71.76825 | 251.75219 | 77 | 1435.357 | 18.641 | 287.0714 | 35.31920514 | | | 1 | | V35136007 (8)
V35434014 (9) | M30 | | _ | E Amazonis Planitia
E Tharsis Montes | 35
6.1 | 681.31
219.92 | 67.027084
48.071648 | | 78
12 | 1388.824
432.648 | 18.274
36.054 | 277.7648 | 11.05412647
191.2352 | + | + | + | | V27836001 (10) | M29 | 1.991 | S 264.95 | E Valles Marineres | 24.1 | 848.657 | 79.33149 | 159.87 | 38.6 | 1410.79 | 35.214 | 282.158 | 122.288 | | | 1 | | V27836001 (11)
V36363004 | M30
2006 | | | | 32.8 | 1155.0192
207.588 | 79.33149
73.95765 | 217.5857 | 47.8
25 | 1635.67
864.95 | 35.214
34.598 | 327.134 | 109.5483
-54.69099053 NA | none | good | NA | | V36363004 | 2006 | -29.5 | 4 110.3 | 3 | 8 | 276.784 | 73.95765 | 79.58799 | 40 | 1383.92 | 34.598 | 8 8 | -71.58798737 NA | none | good | NA | | V36363004
V27105008 | 2006 | | | | 17
36 | 588.166
619.848 | 73.95765
76.05586 | 169.1245 | 60 | | 34.598
17.218 | 12 | -157.1244732 NA
-139.7037376 NA | none | good | NA
NA | | V27105008
V27105008 | 2005 | | | | 49 | | 76.05586 | 209.4801 | 71 | | 17.218 | 3 14.2 | -139.7037376 NA
-195.2800873 NA | none | good
good | NA
NA | | V27105008 | 2005 | | | | 22 | 378.796 | 76.05586 | 94.05228 | 64 | | 17.218 | 12.8 | -81.25228408 NA | none | good | NA | | V27105008
V27105008 | 2005 | -21.4 | | 5 | 69 | | 76.05586
76.05586 | 294.9822 | 105
55 | 1807.89
946.99 | 17.218
17.218 | 3 21
3 11 | -273.9821637 NA
-117.2531147 NA | none | good | NA
NA | | V27105008 | 2005 | -21.4 | 4 111.3 | | 95 | 1635.71 | 76.05586 | 406.1349 | 203 | 3495.254 | 17.218 | 40.6 | -365.5348631 NA | none | good | NA | | V27105008
V18557003 | 2005 | -21.4
-9.4 | | Terra Tyrrhena | 38
16.2 | 654.284
284.1804 | 76.05586
68.54208 | 162.4539
111.7006 | 70
44.5 | 1205.26
780.619 | 17.218
17.542 | 8 14 | -148.4539452 NA
-102.8006094 NA | none | good
good | NA
NA | | V18557003 | 2004 | -9.4 | 8 99.7 | 4 Terra Tyrrhena | 20.9 | 366.6278 | 68.54208 | 144.1076 | 64.5 | 1131.459 | 17.542 | 12.9 | -131.2075764 NA | none | good | NA | | V18557003
V18557003 | 2004 | | | Terra Tyrrhena Terra Tyrrhena | 14.3
7.2 | 250.8506
126.3024 | | 98.59992
49.64472 | 61.5
36.5 | 1078.833
640.283 | 17.542
17.542 | 12.3 | -86.29992067 NA
-42.3447153 NA | none | good | NA
NA | | V18557003 | 2004 | -9.4 | 8 99.7 | Terra Tyrrhena | 16.5 | 289.443 | 68.54208 | 113.7691 | 46.5 | 815.703 | 17.542 | 9.3 | -104.4691392 NA | none | good | NA | | V27633033
V27633033 | 2005 | | | | 83.5
97.1 | 1561.784
1791.3979 | | 511.9663
587.2357 | 130.5
173.5 | 2440.872
3200.9015 | 18.704
18.449 | | -485.8662657 NA
-552.5356825 NA | none | good | NA
NA | | V27296031-1 | 5 | | | | 8.2 | 149.06 | | 50.74416 | 15.1 | 274.5 | 18.2 | | 4.155836818 NA | No | Round | | | V31401009
I32514013 | 4 | 3.6 | | | 9.1
27.7 | 327.29
697.46 | 81.1674
67.82001 | 50.85787 | 16 | 570.2
1208.6 | 36
25.2 | 114.04 | 63.18213076 NA
-42.62404717 NA | Yes
No | Round | | | V27296031-2 | | 17.7 | N 337.2 | Olympus Mons | 113.2 | 2057.75 | 71.2 | | 243.3 | 4428.06 | 18.2 | 885.612 | 185.0967592 NA | Yes | Round | | | V27296031-3
V28700011 (1) | 2006 | 17.7 | N 337.2
N 154.56 | | 40.5
59 | 736.21
1106.486 | 71.2
74.42651 | | 80.9
89.1 | 1470.6
1670.9814 | 18.754
18.754 | 294.12 | 43.49367251 NA
25.81163281 NA | Yes | Round
clear/ mostly | / u NA | | V29274011 (2) | | | N 154.28 | | 47 | | 72.55884 | 276.8624 | 75.7 | 1419.375 | 18.75 | 283.875 | 7.012590981 NA | none | clear/ mostly | | | V29664005
V38758008 | 2008 | | | | 50
17 | 972.45
617.032 | 71.272964
63.776886 | 329.6677 | 102.2
35.3 | 1987.6878
1281.2488 | 19.449
36.296 | 397.53756
256.24976 | 67.86987351 NA
-47.67687561 NA | none | clear/ mostly | | | V27104034 | 2008 | | | | 36 | | 71.30736 | | 150.5 | 2711.8595 | 18.019 | 542.3719 | 322.8973499 NA | none | clear/ mostly | | | V36157001 | 30 | | | | 13.9 | 968.691 | 61.86 | | 34.1 | 2376.429 | 69.69 | 475.2858 | -42.81642999
213.0607757 | | | | | V36157001
V36157001 | 30 | | 3 295.9
3 295.9 | | 11.4
5.7 | 794.466
397.233 | 61.86 | 424.918 | 15.2 | 1059.288
975.66 | 69.69
69.69 | | | | | + | | V26810012 | 29 | 31.0 | 0 320.4 | 2 | 4.2 | 157.92 | 72.36 | 50.2165 | 7 | 263.2 | 37.60 | 52.64 | 2.423455217 | | | | | V30566012
V30566012 | 29 | 29.2 | 5 313.5°
5 313.5° | | 3.6 | 133.92
133.92 | 81.71
81.71 | 19.5129 | 6 | 223.2
260.4 | 37.20
37.20 | 44.64
52.08 | 25.12705512
32.56705512 | | | | | V38414009 | 30 | 26.5 | 6 320.6 | 3 | 4.1 | 76.055 | 60.50 | 43.0298 | 9.8 | 181.79 | 18.55 | 36.358 | -6.671848645 | | | | | V38414009
V28956007 | | | 6 320.6
8 328.0 | | 9.4 | 174.37 | 60.50
74.82 | | 15
10.5 | 278.25
193.515 | 18.55
18.43 | 55.65
38.703 | -43.00379933
13.70093672 | | | | | V28956007
V28956007 | | | 8 328.0 | | 3.6 | 92.15
66.348 | 74.82 | | 7.1 | 193.515 | 18.43 | | 8.169114435 | | | | | V31264011 | 29 | 20.3 | 6 326.42 | 2 | 3.6 | 132.84 | 83.62 | 14.8534 | 9 | 332.1 | 36.90 | 66.42 | 51.56655807 | | | | | V35893016
V27471028 | | 19.1 | 3 326.8
9 329.0 | | 9.4
2.8 | 171.738
51.408 | 52.14
72.45 | 133.502 | 17.5 | 319.725
119.34 | 18.27
18.36 | | -69.55693383
7.609784456 | | | + | | V27471028 | 29 | 18.7 | 9 329.0 | 2 | 1.4 | 25.704 | 72.45 | 8.12911 | 4.1 | 75.276 | 18.36 | 15.0552 | 6.926092228 | | | | | V27471028 | | | 9 329.0 | | 3 | 55.08 | | 17.4195 | 8.1 | 148.716 | 18.36 | | 12.32368335 | | | | | V27783021
V27284029 | 29 | 18.5 | | | 7.1 | 130.214
130.896 | 73.65 | 38.2006
42.9605 | 13.5 | 247.59
199.98 | 18.34
18.18 | 49.518 | 11.31738028
-2.964482387 | | | | | V27284029 | 29 | 18.1 | 6 323.83 | 5 | 4 | 72.72 | 71.83 | 23.8669 | 8.5 | 154.53 | 18.18 | 30.906 | 7.039065341 | | | | | V27284029
V27284029 | 29 | 18.1 | | | 3.2
4.1 | 58.176
74.538 | 71.83
71.83 | 19.0935 | 6 | 109.08
163.62 | 18.18
18.18 | 21.816 | 2.722452273
8.260391974 | | | | | V27284029
V38988048 | 30 | 16.9 | 7 319.4 | | 3.6 | 65.736 | 65.08 | | 7.5 | 136.95 | 18.26 | 27.39 | -3.151530139 | | | | | V35419011 | | 28.3 | 8 319.3 | | 5 | 99.8 | 49.95 | | 12 | | 19.96 | 47.904 | -35.98666431
223.616 | | | | | V35893016 (1)
V37855005 (2) | 5 | -17.3 | | 7 Chryse Planitia
3 Valles Mosaic | | 657.72
692.8 | 52.137894
72.988205 | | | 1388.52
1299 | 18.27
17.32 | 277.704 | -233.616
47.83 | | | + | | V37855005 (3) | 5 | -17.3 | 1 270.4 | Valles Mosaic | | 467.64 | 72.988205 | 143.1 | | 1247 | 17.32 | 249.4 | 106.3 | | | | | V37855005 (4) | 5 | -17.3
22.6 | | Valles Mosaic
Chryse Planitia | | 311.76
1142.66 | 72.988205
74.45318 | | | 831.36
1874.76 | 17.32
18.43 | 166.272 | 70.892
57.062 | | | | | V40024012 (E) | 5 | -9.0 | | Arsis Mons | | 1142.66 | 43.51228 | | | 1874.76 | 17.76 | | -105.12 | | | | | V40024013 (5)
V42286083 (6) | 5 | 13.8 | 2 262.5 | 7 Tharsis Mons | | 180 | 53.205364 | 134.63 | | 360 | 17.99 | 72 | -62.63 | | | | | V42286083 (6)
V36020019 (7) | | 9 | | Terra
Temple Terra | 15
47 | 539.1
1690.6 | 87.94112
81.47538 | 19.37941 | 40
62.35 | 1437.5
2242.7 | 35.938
35.97 | | 268.1245899
195.1428116 | | | | | V42286083 (6)
V36020019 (7)
V22929010 | 2007 | 15 | | Temple Terra | 11 | | 81.47538 | 59.30711 | 15.55 | 559.3 | 35.97 | 111.8667 | 52.55959421 | | | | | V42286083 (6)
V36020019 (7)
V22929010
V13832013
V13832013 | 2005
2005 | | | | | | | 52.83724 | 14.45 | 519.8 | 35.97 | 103.9533 | 51.1160603 | | | | | V42286083 (6)
V36020019 (7)
V22929010
V13832013
V13832013
V13832013 | 2005
2005
2005 | 15 | 4 295. | Temple Terra | 9.8 | | 81.47538 | | | | | | | | | | | V42286083 (6)
V36020019 (7)
V22929010
V13832013
V13832013 | 2005
2005 | 15
15 | 4 295.
6 295. | | 9.8
10
7 | | 81.47538
81.47538
81.82567 | 3 53.91555
7 18.97506 | 15 | 539.6 | 35.97
18.871 | | | | | | | V42286083 (6) V36020019 (7) V22929010 V13832013 V13832013 V13832013 V13832013 V20395002 V20395002 | 2005
2005
2005
2005
2005
2005 | 15
15
40
36 | 4 295.
6 295.
4 341.
4 338. | B Temple Terra
B Temple Terra
B Chryse Planitia
B Chryse Planitia | 10
7
15.3 | 359.7
132.1
288.7 | 81.47538
81.82567
81.82567 | 3 53.91555
7 18.97506
7 41.47406 | 15
20
31 | 539.6
377.4
585.0 | 35.97
18.871
18.871 | 107.91
75.484
117.0002 | 53.99444928
56.50893947
75.52613912 | | | | | V42286083 (6) V36020019 (7) V22929010 V13832013 V13832013 V13832013 V13832013 V20395002 V20395002 V29213009 | 2005
2005
2005
2005
2005
2005
2005
2006 | 15
15
40
36 | 4 295.
6 295.
4 341.
4 338.
2 114. | 3 Temple Terra
3 Temple Terra
3 Chryse Planitia
3 Chryse Planitia
1 Acidalia Planitia | 10
7
15.3
145.1 | 359.7
132.1
288.7
2708.0 | 81.47538
81.82567
81.82567
74.61447 | 3 53.91555
7 18.97506
7 41.47406
7 745.1721 | 15
20
31
219 | 539.6
377.4
585.0
4087.2 | 35.97
18.871
18.871
18.663 | 75.484
117.0002
8 117.4394 | 53.99444928
56.50893947
75.52613912
72.26730978 | | | | | V42286083 (6) V36020019 (7) V22999010 V13832013 V13832013 V13832013 V13832013 V20395002 V20395002 | 2005
2005
2005
2005
2005
2005 | 15
15
40
36
30
29 | 4 295.
6 295.
4 341.
4 338.
2 114.
7 114. | B Temple Terra
B Temple Terra
B Chryse Planitia
B Chryse Planitia | 10
7
15.3 | 359.7
132.1
288.7
2708.0
533.8 | 81.47538
81.82567
81.82567 | 3 53.91555
7 18.97506
7 41.47406
7 745.1721
7 146.8775 | 15
20
31 | 539.6
377.4
585.0 | 35.97
18.871
18.871 | 107.91
75.484
117.0002 | 53.99444928
56.50893947
75.52613912 | | | | In order to better understand the data we collected, the following are some of the graphs generated by subsets of the above data: Data Compiled by William and Cole Data Compiled by Ryan and Dagen Compiled by Ryan and Dagen Shows locations on Mars of craters measured by Ryan and Dagen Data Compiled by Athen and Patrick Compiled by Athen and Patrick Compiled by Athen and Patrick Compiled from Athen and Patrick Data White dots are locations of craters analyzed by Athen and Patrick After quite a bit of time analyzing craters and their possible decay rates, we were also intrigued to look at the amount of infill the craters had accumulated. The original depth of the craters can be calculated by using the formula: Diam X 0.2. (Manfredi 1) This allowed us to calculate the amount of material that has accumulated in the craters. An example of this is: Data collected by Eric and Josh A plot of the amount of infill of a crater as a function of diameter: Data collected by Eric and Josh #### V. Discussion Our data shows that a rate of decay is not as simple to calculate from THEMIS images as we had hoped. Although we were able to measure quite a number of crater depths, we found such wide variations in the changes to those depths that one begins to question the validity of the data or the methods. The biggest issue is the size of a pixel of data. When using the program gimp to measure the length of the shadow of a crater, even a slight variation of one pixel can generate a difference in depth of 18 to 75 m, depending on the resolution of the image used. The shadows appear in the craters as shades of gray – where one called the shadow to end can have a significant effect on the supposed depth of the crater. The edges of shadows are not the clearest things and lead to a margin of error. Also, when examining the graphs of crater depths, we found some craters appeared to fill in while other appeared to become deeper. There might be a plausible explanation for the in-filling of a crater over time (our proposal), but for a crater to become deeper makes one wonder. Could a dust storm really remove 250 m of dust in a span of 2 years? Information provided by the research scientists at ASU indicated this would be unlikely (Manfredi,1) As a typical subset of data, the graph below shows craters 1A, 2A, 3A, 7A, 8A, and 9A getting filled in in the period of time that passed between photos. Yet, craters 4A, 5A and 6A appear to be getting deeper. For us to determine a rate of decay we needed to find the change in depth and then divide it by the time elapsed. This graph displays the change in depth of 10 craters over a certain number of Mars years. These values are then used to find the rate of decay by taking Change in depth divided by the number of years elapsed. This type of analysis shows randomness to the depth changes over time. We would expect greater depth changes as more time passes. This graph shows the decay rate compared to the diameter of the crater. This is important because our question focused on small craters (2 kilometers or less) and we can see how that value varies with size of the crater. It could be interpreted that smaller diameters have a higher rate of decay. But because of the randomness, an average rate of decay for small craters cannot be determined. The importance of displaying our data on a geographic map of Mars is that it helps visualize where our data is located. Because part of our original question was to focus on specific regions on Mars we can see perhaps some trends for each specific region. Since our data comes from more parts of the planet it makes the data collected have more direct credibility and can be applied to most of the surface. This graph was done as a type of control. Since we were concerned about measurement errors, we thought comparing diameters, which were measured from two difference images of the same craters, would give a bit of an indication of consistency in measurement. This data set does indicate that most of our measurements of crater's diameters are fairly close, with one exception (set 9). The differences between diameters for all except pair nine seem to be within tens of meters, and could be due to different sun angles for the two images. The fact that our diameter measurements were fairly consistent of the same crater over a period of years does seem to suggest we are able to use the gimp program effectively, and suggests that our measurements of the depths of these craters are not in error because of our understanding of the gimp program. The original depth of the craters can be calculated by using the formula: Diam X 0.2. (Manfredi 1) This allowed us to calculate the amount of material that has accumulated in the craters. An example of this is: When the infill is plotted as a function of crater diameter, a nice linear relationship is demonstrated reflecting the formula y = 0.1754 x - 16.44. We calculated the original depth from the formula 0.2 x diameter. We then measured the current depth from shadows on THEMIS images, this data, allowing us to determine the amount of infill. The trend –line shows a consistent rate of infill for craters ranging in size from 800 m to 3600 m. There are many potential errors that could have been made. The first being that when we measured the pixels being off by just one pixel could hugely alter our data (18 to 75 m). Second, determining where the edge of a shadow ends to calculate depths of the craters was subjective. There could also be errors with the calculations by mis-entering a number in a calculator or recording the wrong answer. #### VI. Conclusions Our science question was, can the rate of degradation be determined in small preserved craters on the Martian surface? From our research it can be seen that a rate of degradation can be determined in some small preserved craters. However there does not seem to be any pattern in the rate of decay. As discussed earlier, there is room for many errors so that also must be taken into account here. One hypothesis we had was that the preserved craters would decay faster in the plains regions than in the Polar Regions. We also thought that the craters would decay faster in the Northern Hemisphere because it is windier there. Unfortunately, since throughout our research we discarded looking at specific regions, our hypotheses cannot be supported or disproven. In order to further our research, a number of thing could be done. It seems the best way to determine how much a crater fills in over time might be to send small devices specifically to Mars to measure dust infilling small preserved craters. A rain-gauge type of device that would be able to use light to measure the depth of the collected dust would seem feasible. Without dust-gauge devices, this question could use further researched with HiRise or CTX- high resolution satellite images on Mars. The higher resolution images would significantly lower the margin of error generated by camera resolution and shadow definition. Continued research could easily benefit further rover missions, helping them avoid potentially disastrous dust storms; landing missions, giving us an idea of where the best sites would be; and give us a general idea of Martian weather, so we could better prepare our equipment to survive exposure. Regarding subsequent findings, we did see that craters show a consistent rate of in-filling over time and that larger craters have become more filled in than smaller craters. We need to give a special thanks to Mrs. Miller for making this project possible! Without her, we wouldn't have been able to learn or experience any of this. Many people have contributed to helping with our project. We thank Mr. Clouse and Mrs. Green for taking time out of their schedules to travel with us to Arizona and be sponsors. We thank ASU staff, especially Mr. Leon Manfredi and all workers with the Mars Student Imaging Project for allowing us to participate in the program and working with us to answer our question. We also thank supporters of our trips for their donations so that we could go to ASU: Leggett and Platt, Tri-State Engineering, Joplin Greenhouse, McAllister's, and, of course, our parents. And of course, none of this would be possible without NASA, the ASU Mars Education Program, the Mars Odyssey spacecraft or the THEMIS camera. We also give thanks to the Lord God for giving us curious minds with which to explore the vast Universe He created. #### VI. References - 'The Explorer's Guide to Craters', Planetary Science Institute, www.psi.edu/explorecraters/background.htm - "Decay." *Merriam-Webster Learner's Dictionary*. Web. 15 May. 2012. http://www.learnersdictionary.com/search/erosion.dictionary.com - Manfreti, Leon. "Mars Student Imaging Project EXPLORE." MSIP. ASU Campus, Tempe. 8-9 May 2012. Lecture. - Squyres, Steven W. "Mars." World Book Online Reference Center. 15 May, 2012. World Book, Inc. www.mars2112.com/facts.html - Themis Images, Web. Feb 15 May 15 2012. http://www.themis.asu.edu - 'Themis keeps an eye on Mars for dust'.11 Jan 2011. (April 12, 2012) from Arizona University, School or Earth and Space Exploration. Themis Website: Http://themis.asu.edu - Watt, K. (2002) Mars Student Imaging Project: Resource Maunuel. Retrieved June 29, 2006, (Feb 3, 2012) from Arizona State University, Mars Student Imaging Project Web site: http://msip.asu.edu/curriculum.html.